The Asian Journal of Horticulture, 3 (1): 90-92 (June-2008)

Micro propagation studies in *Chrysanthemum* cv. BASANTHI with regards to hormonal concentration and type of explant

S. MAHESHWARAMMA AND D. LOKANADHA REDDY

See end of the article for authors' affiliations

Correspondence to : S.MAHESHWARAMMA Department of Genetics and Plant Breeding, College of Agriculture, Acharya N.G. Ranga Agricultural University, Rajendranagar, HYDERABAD (A.P.) INDIA

Accepted : April, 2008

ABSTRACT

The biotechnological inverventions were required to modify the plant traits as desired by consumer. *Chrysanthemum (Dendranthema grandiflora* Tzelev) are largely grown throughout the length and breadth of India. It has its admirer and enthusiants all over the world. The present investigation dealt with micropropagation of *Chrysanthemum* cultivar Basanthi with four explants *viz.*, shoot tip, leaf, axillary bud and internodal segments and tested for high frequency of regeneration in MS medium supplemented with various combinations of auxins (IAA and NAA) and cytokinins (BAP and kinetin). The highest regeneration frequency (51.0%) was recorded in Basanthi with leaf explant culture when MS medium supplemented with IAA (1.5 mg/l) and BAP (2.0 mg/l).

Key words : Chrysanthemum, Micropropagation, IAA, BAP, NAA.

Chrysanthemum (Dendranthema grandiflora Tzvelev) is one of the world's most leading and popular flower crops of commercial importance. The commercial cultivars are usually propagated vegetatively through cuttings and suckers. Breeding programmes have focused on improving various characteristics to enhance the ornamental value, including the colour, size and form of the flower, production quality and reaction to the environment (Broertjes *et al.*, 1980).

Biotechnology involving modern tissue culture, cell biology and molecular biology offers the opportunity to develop new germplasm that are better adopted to changing demands. In this way, extensive studies have been carried out with Chrysanthemum on various aspects of its biotechnology, such as micropropagation, adventitious shoot bud regeneration from various explants and somatic embryogenesis. Dendranthema grandiflora has been micropropagated to meet domestic and external market. The advantages are many including propagating large number of plants in a short period with genetically true to type nature. In addition, the rapid protocols also help in fundamental studies such as understanding of plant biology and applied areas like genetic engineering and development of pathotoxin resistant cultivars and stable mutants in vitro.

MATERIALS AND METHODS

The present study was carried out at Tissue Culture

Laboratory, Department of Genetics and Plant Breeding, College of Agriculture, Rajendranagar, Hyderabad during December, 2004 to August, 2005. From the Agricultural Research Institute, Rajendranagar, Hyderabad, the explants viz., shoot tip, leaf, axillary bud and internodal segment of Chrysanthemum cultivar Snow Cem were collected from their mother plants. Shoot tips of one cm length, leaf bits of one cm² size, axillary bud of 0.5 cm size and internodal segment of 0.5 cm length were excised and thoroughly washed with tap water followed by rinsing with distilled water and subsequently treated with 0.1 per cent mercuric chloride (HgCl₂) for four minutes and rinsed with sterile double distilled water to remove any traces of mercuric chloride. They were placed on sterile filter paper to remove any excess moisture. The explants were inoculated on basal MS (Murashige and Skoog's) medium supplemented with different growth regulators like IAA, NAA, BAP and kinetin at different concentrations needed to achieve the target response. The number of regenerants produced and mean number of regenerants produced from different explants from the cultivar were studied periodically.

RESULTS AND DISCUSSION

Four explants of Basanthi cultivar *viz.*, shoot tip, leaf, axillary bud and internodal segment have been studied for their relative efficiency to regenerate on MS medium supplemented with growth regulators with varied concentrations such as IAA (1.0, 1.5 and 2.0 mg/l) and BAP (2.0, 2.5 and 3.0 mg/l). The IAA (1.5 mg/l) and BAP (2.0 mg/l) combination recorded highest frequency